随着机器学习的兴起,特别是生成式人工智能的发展,需要大量的计算密集型工作负载,计算资源变得越来越受追捧。然而,由于大型公司和政府大量囤积这些资源,初创企业和独立开发者如今在市场上面临GPU短缺,导致成本过高或缺乏可获取性。 计算DePINs通过允许世界各地的人们提供闲置的计算资源(如GPU)以换取货币奖励,从而实现计算资源的去中心化市场。这旨在帮助未被充分服务的GPU消费者获取新的供应流,以较低的成本和开销获得其工作负载所需的开发资源。 今天,计算DePINs在与传统集中式服务提供商竞争时仍面临许多经济和技术挑战,其中一些问题会随着时间自行解决,而另一些问题则需要在未来提出新的解决方案和优化措施。
计算是新的石油自工业革命以来,技术以空前的速度推动人类前进,几乎日常生活的每个方面都受到了影响或完全改变。计算机最终成为集体研究人员、学者和计算机工程师努力的结晶。最初设计用于解决大型算术任务,以协助先进的军事行动,计算机已发展成为现代生活的支柱。随着计算机对人类影响的持续增长,对这些机器及其所需资源的需求也在不断增长,超过了可用供应。这反过来又在市场上造成了大多数开发者和企业无法获得关键资源的动态,使机器学习和生成式人工智能的发展,今天最具变革性的技术,掌握在少数资金雄厚的玩家手中。同时,大量闲置的计算资源为缓解计算供应和需求之间的不平衡提供了一个有利可图的机会,加剧了交易双方参与者之间足够协调机制的需求。因此,我们认为,由区块链技术和数字资产支持的去中心化系统对于更广泛、更民主和负责任的生成式人工智能产品和服务的发展至关重要。 计算资源计算可以定义为计算机基于给定输入发出明确输出的各种活动、应用或工作负载。最终,它指的是计算机的计算和处理能力,这是这些机器在当今现代世界中发挥核心效用的基础,去年仅计算机就产生了高达1.1万亿美元的收入。 计算资源指的是各种支持计算和处理的硬件和软件组件。随着这些组件所支持的应用程序和功能数量的持续增长,它们在日常生活中变得越来越重要。这导致国家力量和企业之间争相积累尽可能多的这些资源,作为一种生存手段。这反映在提供这些资源的公司的市场表现中(例如,Nvidia,其市值在过去5年中增长了3000%以上)。 GPU图形处理单元(GPU)是现代高性能计算中最重要的资源之一。其核心功能是作为专用电子电路,通过并行处理加速计算机图形工作负载。最初服务于游戏和个人计算机行业,GPU已经发展为服务于塑造未来世界的许多新兴技术(如大型机和个人计算机、移动设备、云计算、物联网)。然而,机器学习和人工智能的崛起特别加剧了对这些资源的需求 - GPU通过并行执行计算来加速机器学习和人工智能操作,从而增强最终技术的处理能力和性能。 人工智能的崛起人工智能(AI)的核心是一种使计算机和机器模拟人类智能和解决问题能力的技术。一个AI模型作为一个由许多不同数据块组成的神经网络运行。模型需要处理能力来识别和学习这些数据之间的关系,然后在基于给定输入创建输出时参考这些关系。 AI开发和生产并不是新事物;在1967年,Frank Rosenblatt 建造了Mark 1 Perceptron,这是第一个基于神经网络的计算机,通过试错法进行“学习”。此外,大量奠定了现代AI发展的学术研究在90年代末和2000年代初发布,行业自此继续发展。 除了研发努力外,“狭义”AI模型还支持着今天使用的各种强大应用程序。例子包括社交媒体算法、Apple的Siri和Amazon的Alexa、定制产品推荐等等。值得注意的是,深度学习的兴起改变了人工生成智能(AGI)的发展。深度学习算法比机器学习应用程序使用更大或“更深”的神经网络,作为具有更广泛性能能力的更可扩展替代方案。生成式AI模型“编码其训练数据的简化表示,并参考它发出类似但不相同的新输出。” 深度学习使开发者能够将生成式AI模型扩展到图像、语音和其他复杂数据类型,而像ChatGPT这样的里程碑应用程序,已经创造了现代最快增长的用户基础记录,仍然只是生成式AI和深度学习可能实现的早期版本。 考虑到这一点,生成式AI开发涉及多个计算密集型工作负载,需要大量的处理能力和计算能力也就不足为奇了。 根据《深度学习应用需求的三重打击》报告,AI应用开发受制于几个关键工作负载: 训练 - 模型必须处理和分析大数据集,以学习如何响应给定输入。 调优 - 模型经历一系列重复过程,在其中调整和优化各种超参数以改善性能和质量。 模拟 - 在部署之前,某些模型(如强化学习算法)要进行一系列测试模拟。
计算紧缺:需求 > 供应在过去的几十年里,各种技术进步推动了对计算和处理能力的空前需求激增。因此,今天对计算资源(如GPU)的需求远远超过了可用供应,造成了AI开发的瓶颈,如果没有有效的解决方案,这种情况只会继续恶化。 供应的更广泛限制还受到大量公司积极购买超出其实际需求的GPU的推动,这既是一种竞争优势,也是现代全球经济中的生存手段。计算提供商通常采用需要长期资本承诺的合同结构,为客户提供远远超出其需求要求的供应。 Epoch的研究表明,计算密集型AI模型发布的总体数量迅速增长,表明对推动这些技术的资源的需求将继续快速增长。 随着AI模型的复杂性不断增加,应用开发者对计算和处理能力的需求也在不断增长。反过来,GPU的性能及其可用性将扮演越来越重要的角色。这一趋势已经显现出来,高端GPU的需求激增,例如由Nvidia生产的GPU,该公司称GPU为AI行业的“稀土金属”或“黄金”。 AI的快速商业化有可能将控制权交给少数科技巨头,类似于当今的社交媒体行业,这引发了对这些模型伦理基础的担忧。一个著名的例子是最近Google Gemini的争议。虽然其对各种提示的许多奇怪回复当时没有造成任何实际危险,但这一事件展示了少数公司主导和控制AI开发的内在风险。 当今的科技初创企业在获取计算资源以支持其AI模型方面面临越来越多的挑战。这些应用程序在模型部署之前需要执行大量的计算密集型过程。对于小型企业来说,积累大量的GPU是一项不可持续的努力,而传统的云计算服务如AWS或Google Cloud虽然提供了无缝且便捷的开发者体验,但其有限的容量最终导致高昂的成本,使许多开发者望而却步。归根结底,不是每个人都能提出筹集7万亿美元用于硬件成本的计划。 那么该怎么办?Nvidia之前估计,有超过4万家公司使用GPU进行AI和加速计算,全球有超过400万开发者社区。展望未来,全球AI市场预计将从2023年的5150亿美元增长到2032年的2.74万亿美元,年均增长率为20.4%。同时,GPU市场预计到2032年将达到4000亿美元,年均增长率为25%。 然而,在AI革命之后,计算资源供需之间日益扩大的不平衡可能会创造一个相当反乌托邦的未来,其中少数资金充足的巨头主导了许多变革性技术的发展。因此,我们认为所有的道路都通向去中心化的替代解决方案,以帮助弥合AI开发者需求与可用资源之间的差距。 DePINs的角色什么是DePINs?DePIN是由Messari研究团队创造的一个术语,代表去中心化物理基础设施网络。拆开来看,去中心化是指没有单一实体抽取租金和限制访问。同时,物理基础设施指的是利用的“现实生活”物理资源。网络指的是一组参与者以协调的方式工作以实现预定目标或目标集。今天,DePINs的总市值约为283亿美元。 DePINs的核心是全球节点网络,将物理基础设施资源与区块链连接起来,以实现去中心化市场,连接买家和供应商,任何人都可以成为供应商,并为其服务和对网络的贡献获得补偿。在这种情况下,通过各种法律和监管手段以及服务费用限制访问网络的中央中介被智能合约和代码组成的去中心化协议取代,由其各自的代币持有者管理。 DePINs的价值在于它们提供了去中心化、可访问、低成本和可扩展的传统资源网络和服务提供商的替代方案。它们实现了去中心化的市场,旨在达到一个特定的终极目标;商品和服务的成本由市场动态决定,任何人可以随时参与,随着供应商数量的增加和利润率的降低,自然地降低单位成本。 使用区块链使DePINs能够构建加密经济激励系统,帮助确保网络参与者为其服务获得适当的补偿,使关键价值提供者成为利益相关者。然而,重要的是要注意,网络效应是通过将小的个体网络转变为更大的生产系统来实现的,这对于实现DePINs的许多好处至关重要。此外,尽管代币奖励已被证明是网络引导机制的强大手段,但在更广泛的DePINs领域中,建立可持续的激励措施以帮助用户留存和长期采用仍然是一个关键挑战。 DePINs如何运作?为了更好地理解DePINs在支持去中心化计算市场中提供的价值,重要的是认识到不同的结构组件及其如何协同工作以形成去中心化资源网络。让我们考虑一个DePINs的结构和参与者。 协议一个去中心化的协议,即建立在基础区块链网络之上的一组智能合约,用于促进网络参与者之间的信任互动。在理想情况下,该协议将由一组多元化的利益相关者管理,他们积极致力于网络的长期成功。这些利益相关者然后使用其持有的协议代币对提议的变更和发展进行投票。鉴于成功协调一个分布式网络本身就是一个巨大挑战,核心团队通常会在初期保留实施这些变更的权力,然后将权力过渡给去中心化自治组织(DAO)。 网络参与者资源网络的终端用户是其最有价值的参与者,可以根据其功能进行分类。 供应商:提供资源给网络的个人或实体,以换取DePINs原生代币支付的货币奖励。供应商通过区块链本地协议“连接”到网络,该协议可能强制执行白名单上网过程或无权限过程。通过接收代币,供应商在网络中获得了一部分权益,类似于股权所有权上下文中的利益相关者,使他们能够对各种提案和网络发展进行投票,例如他们认为将有助于推动需求和增加网络价值的提案,从而随着时间的推移创造更高的代币价格。当然,接收代币的供应商也很可能利用DePINs作为被动收入的一种形式,并在接收代币时将其出售。 消费者:这些是积极寻找DePINs提供的资源的个人或实体,如寻求GPU的AI初创公司,代表经济方程中的需求方。如果使用DePINs比传统替代方案有实际优势(如更低的成本和开销要求),消费者会被迫使用DePINs,从而代表网络的有机需求。DePINs通常要求消费者以其原生代币支付资源费用,作为创造价值和保持稳定现金流的一种手段。 资源DePINs可以服务于不同的市场,并采用不同的商业模式分配资源。Blockworks为此提供了一个很好的框架;定制硬件DePINs,为供应商提供专门的专有硬件进行分配;和商品硬件DePINs,使现有的闲置资源(包括但不限于计算、存储和带宽)的分配成为可能。 经济学在一个理想运作的DePIN中,价值从消费者支付供应商资源的收入中积累。对网络的持续需求意味着对原生代币的持续需求,这与供应商和代币持有者的经济激励相一致。在早期阶段产生可持续的有机需求对大多数初创企业来说是一个挑战,这就是为什么DePINs会提供通胀性代币激励来激励早期供应商和引导网络的供应,以此产生需求,从而产生更多有机供应。这与风投在公司初期阶段补贴Uber乘客成本以引导最初的客户群,从而进一步吸引司机并增强其网络效应的方式非常相似。 DePINs需要尽可能战略性地管理代币激励,因为它们在网络的整体成功中起着关键作用。当需求和网络收入上升时,代币发行应该减少。相反,当需求和收入下降时,代币发行应该被用来再次激励供应。 为了进一步说明一个成功的DePIN网络的样子,可以考虑“DePIN飞轮”,一个用于引导DePINs的积极反射循环。总结如下: DePIN通过分发通胀性代币奖励来激励供应商向网络提供资源,并建立一个可供消费的基本供应水平。 假设供应商的数量开始增长,网络中开始形成竞争动态,提高了网络提供的商品和服务的整体质量,达到比现有市场解决方案更好的水平,从而获得竞争优势。这意味着一个去中心化系统超越了传统的集中式服务提供商,这绝非易事。 DePIN开始形成有机需求,为供应商提供合法的现金流。这对投资者和供应商来说是一个引人注目的机会,继续推动网络需求并因此推高代币价格。
代币价格的增长增加了供应商的收入,吸引了更多的供应商,重新启动了飞轮。
|